三倍数蒙氏教案7篇

时间:2023-03-25 00:47:02 分类:心得体会

作为教育工作者制定教案是我们必须掌握的工作技能,教案是老师为了更有力把握知识点提早整理的书面表达,下面是范文社小编为您分享的三倍数蒙氏教案7篇,感谢您的参阅。

三倍数蒙氏教案7篇

三倍数蒙氏教案篇1

教学内容:

义务教育课程标准小学数学五年级下册第二章《因数和倍数》第1节例1(教材第13页)及练习二的第2题,第四题的前部分。

教材分析:

本节教学是在学生学习掌握了因数和倍数两个概念的基础上,在教师的引导下,让学生运用乘法算式及除法中的整除自主尝试、探究“求一个数的因数”的方法。同时,通过多种形式的训练,使学生能熟练找全一个数的因数。另外,通过引导学生用集合的形式表示一个数的因数,一方面给学生渗透集合思想,更重要的是为后面教学求两个数的公因数做准备。

教学目标:

1、应用尝试教学法鼓励学生自主尝试探究求一个数的因数的方法及规律特点,并能熟练找全一个数的因数;

2、逐步培养学生从个别到全体、从具体到一般的抽象归纳的思想方法。

教学重点:

探究求一个数的因数的方法及规律特点。

教学难点:

用求一个数的因数的方法熟练找全一个数的因数。

教具准备:

投影仪、小黑板、卡片

教学课时:一课时

教学设想:

运用尝试教学法,从学生已有的知识经验出发,通过教师引导、学生自学例1,自主尝试、探究求一个数的因数的方法方法,并能运用所获得的方法、经验找全一个数的因数。

教学过程:

一、复习旧知

师:同学们,前面学习了因数和倍数的概念,老师很想考考你们学得怎么样,可以吗?

生:(预设)可以!

师:出示小黑板。

1、利用因数和倍数的相互依存关系说一说下面各组数的相互关系。

21和7 2×7=14 30÷6=5

2、判断。

(1)12是倍数,2是因数。

(2)1是14的因数,14是1的倍数。

(3)因为6×0、5=3,所以,6和0、5是3的因数,3是6和0、5的倍数。

教师根据学生完成练习的情况对学生进行恰当的表扬激励,同时进入新课教学:……

二、新课教学

过程一:尝试训练。

(一)出示问题

师:同学们,老师有一个新问题,想请大家帮助解决,行吗?

生:行!(预设)

尝试题:14的因数有哪几个?

(二)学生解决问题,教师巡视并根据实际适时辅导学困生。

(三)信息反馈。

板书:

1×14

14 2×7

14÷2

14的因数有:1,2,7,14

过程二:自学课本(p13例1)。

(一)学生自学例1。

教师提出自学要求(投影):

1、18有哪些因数?

2、文中的小朋友是怎样找出18的因数的?他们找完了吗?如果没有,请帮助他们完成。

3、你还有别的找法吗?请试一试,并用自己喜欢的方式写出18所有的因数。

(二)信息反馈

1、反馈自学要求情况;

板书:

1×18

18 2×9

3×6

18的因数有1,2,3,6,9,18。

还可以这样表示: 18的因数

2、知识对比,探索发现规律。

(1)师:同学们,根据求14和18的因数时获得的体验,再思考下面问题:

投影出示问题:

思考一:你用什么方法找出?

(2)学生思考,教师适时引导。

(3)同桌交流思考结果。

(4)师生互动。总结方法、点出课题。

求一个数的因数的方法:用乘法计算或除法计算(整除)

过程三:尝试练习

(一)用小黑板出示练习题

1、找出30的因数有哪些?36的因数有哪些?

2、结合14、18、30、36的因数个数,请你谈谈一个数的因数有什么特点?〖提示:一个数的最小因数是( ),的因数是( )。〗

(二)信息反馈:师生互动总结特点。

板书:

一个数的因数的个数是有限的。它的最小因数是1,的因数是它本身。

三、课堂作业

练习二第2题和第4题前半部分。

四、课堂延伸

猜一猜:(卡片)只有一个因数的数是谁?

五、课堂小结

师:今天你学会了求一个数的因数的方法吗?你知道一个数的因数特点吗?

生:……

板书设计:

求一个数的因数的方法

1×14

14 2×7

方法:用乘法计算或除法计算(整除)

14÷2

14的因数有:1,2,7,14

1×18

18 2×9

3×6

18的因数有:1,2,3,6,9,18 特点:一个数的因数的个数是有限的。

还可以表示为:

它的最小因数是1,的因数是它本身。

三倍数蒙氏教案篇2

小学数学《3的倍数的特征》教案

一、教学目标

?知识与技能】

理解和掌握3的倍数的特征,能熟练判断一个数是否是3的倍数。

?过程与方法】

经历观察、猜想、推翻猜想、再观察、再猜想、验证的过程,提升逻辑推理能力。

?情感、态度与价值观】

在猜想论证的过程中,体会数学的严谨性。

二、教学重难点

?重点】3的倍数的特征,判断一个数是否是3的倍数。

?难点】3的倍数的数的特征的归纳过程。

三、教学过程

(一)导入新课

复习导入:我们是如何研究2、5的倍数的特征的?

引出继续利用百数表研究3的倍数的特征并出示课题。

(二)讲解新知

组织学生在百数表中圈出3的倍数,提出问题:能否猜想3的.倍数的特征会与什么有关?

学生发现从个位探究并不成功,教师顺势引导——单纯横着看找不到什么规律,还能怎么看;或是提示我们只看个位不行还能怎么看。引导学生发现“斜着看时,十位依次增大1,个位依次减小1,总和不变”。

组织学生小组讨论,重点讨论3的倍数对于个位是否还有特殊要求以及十位与个位的和有没有什么规律,之后教师再组织学生反馈多次举例验证,便可以得出个位可以是任意数且十位和个位的和均为3的倍数。

提问学生应该如何找到3的倍数,引导学生发现总结规律的必要性。

师生共同总结得出:一个数各位上的数的和是3的倍数,这个数就是3的倍数。

(三)课堂练习

1。判断下面的数是否为3的倍数。

24 58 46 96

2。尝试在每个数后面加一个数使这个三位数成为3的倍数。

(四)小结作业

提问:今天有什么收获?

带领学生回顾:3的倍数的特征;发现研究倍数的特征,方法却各有不一,体会数学知识的多样性。

课后作业:

思考什么样的数字同时是2、3、5的倍数,并尝试列举1000以内的这种数字。

四、板书设计

三倍数蒙氏教案篇3

教学目标:

1、在探索活动中,观察发现3的倍数的特征。

2、能够运用2、3、5的倍数的特征,迁移类推出其他相关倍数问题的解决方法。

教学重点:观察发现3的倍数的特征

教学难点:运用2、3、5的倍数的特征

教学过程;

活动一:复习巩固。

1、前面我们研究了2和5的倍数的特征,能用你的话说一说他们的特征么?指名说

2、请你举例说明。(请学生说,教师把学生的举例板书在黑板上。)

3、说说能同时被2和5整除的数有什么特征?(观察特征。用自己的话说一说。)

活动二:探索研究3的倍数的特征。

1、在书上第6页的表中,找出3的倍数,并做上记号。

2、观察3的倍数,你发现了什么?先独立完成,看谁找的快

教师参与到讨论学习中。先独立思考,想己的想法,然后与四人小组的同学说说你的发现。

生一:3的倍数个位上的数有0、1、2、3、4、5、6、7、8、9没什么规律。

生二:十位上的数也没有什么规律。

生三:将每个数的各个数字加起来试试看

3、你发现的规律对三位数成立吗?找几个数来检验一下。

活动三:试一试

在下面数中圈出3的倍数。

284553873665

活动四:练一练

1、请将编号是3的倍数的气球涂上颜色。自己独立完成,在小组内说说自己的想法。

361754714548

2、选出两个数字组成一个两位数,分别满足下面的条件。独立完成,说说你的窍门和方法。

(1)是3的倍数。

(2)同时是2和3的倍数。

(3)同时是3和5的倍数。

(4)同时是2,3和5的倍数。

活动五:实践活动

在下表中找出9的倍数,并涂上颜色。可以在自主实践以后再交流。

板书设计:

三倍数蒙氏教案篇4

教学目标:

1、从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。

2、培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。

3、培养学生的合作意识、探索意识,以及热爱数学学习的情感。

教学重点:

理解因数和倍数的含义。

教学过程:

一、创设情境,引入新课

师:人与人之间存在着许多种关系,你们和爸爸(妈妈)的关系是……?

生:父子(父母、母子、母女)关系。

师:我和你们的关系是……?

生:师生关系。

师:对,我是你们的老师,你们是我的学生,我们的关系是师生关系。在数学中,数与数之间也存在着多种关系,这一节课,我们一起探讨两数之间的因数与倍数关系。(板书课题:因数与倍数)

二、认识因数与倍数

师:我们已经认识了哪几类数?

生:自然数,小数,分数。

师:现在我们来研究自然数中数与数之间的关系。请你们用12个小正方形摆成不同的长方形,并根据摆成的不同情况写出乘、除算式。

根据学生的汇报板书:

1×12=12 2×6=12 3×4=12

12×1=12 6×2=12 4×3=12

12÷1=12 12÷2=6 12÷3=4

12÷12=1 12÷6=2 12÷4=3

师:在这3组乘、除法算式中,都有什么共同点?

生:第①组每个式子都有1、12这两个数。

生:第②组每个式子都有2、6、12这三个数。

生:第③组每个式子都有3、4、12这三个数。

师:(指着第②组)像这样的乘、除法式子中的三个数之间的关系还有一种说法,你们想知道吗?请看课本p12、

师:2和6与12的关系还可以怎样说呢?

生:2和6是12的因数,12是2的倍数,也是6的倍数。

师:也就是说,2和12、6的关系是因数和倍数的关系,这几组算式中,谁和谁还有因数和倍数的关系?

生:3、4和12有因数和倍数关系,3和4是12的因数,12是3和4的倍数。

生:我认为1和12也有因数和倍数关系。1是12的因数,12是1的倍数。

生:可以说12是12的因数吗?

生:我认为可以,12×1=12,1和12都是12的因数。

师:说得真好,从上面3组算式中,我们知道1,2,3,4,6,12都是12的因数。

师出示:11÷2=5……1、问:11是2的倍数吗?为什么?

生:我认为不是,因为11除以2有余数。

师:你能举一个算式,并说说谁是谁的倍数,谁是谁的因数吗?

生:2×4=8,2和4是8的因数,8是2和4的倍数。

生:40÷2=20,40是2和20的倍数,2和20是40的因数。

师出示:0×3 0×10

0÷3 0÷10

通过刚才的计算,你有什么发现?

生:我发现0和任何数相乘,都等于0。

生:0除以任何数都等于0。

生:我补充,0不能作为除数。

师:所以在研究因数和倍数时,我们所说的数一般指整数,不包括0。

师生小结:这节课,你们都学会了哪些知识?还有什么不明白的地方?

生:我有一个疑问,在2×6=12中,2叫因数是指在算式中它的名称,而2是12的因数指的是2和12的关系,这两种说法一样吗?

师:这个问题提得好!谁能回答他的问题?

生:我觉得好像不一样,但不知道为什么?

生:我认为不一样,在2×6=12中,2叫因数是指在算式中它的名称,而2是12的因数指的是2和12的关系。

师:说的真好。这节课我们研究因数与倍数的关系中所说的因数不是以前乘法算式中各部分名称中的“因数”,两者可不能搞混哦!

三、课堂练习

1、下面每一组数中,谁是谁的倍数,谁是谁的因数。

16和2 4和24 72和8 20和5

2、下面的说法对吗?说出理由。

(1)48是6的倍数。

(2)在13÷4=3……1中,13是4的倍数。

(3)因为3×6=18,所以18是倍数,3和6是因数。

师:第(3)题有两种不同的意见,请反对意见的同学说说理由。

生:因为没有说明18是谁的倍数,所以不对。

师:你认为怎样说才正确呢?

生:我认为应该这么说:18是3和6的倍数,3和6是18的因数。

师:在说倍数(或因数)时,必须说明谁是谁的倍数(或因数)。不能单独说谁是倍数(或因数),也就是说:因数和倍数不能单独存在。

3、在36、4、9、12、3、0这些数中,谁和谁有因数和倍数关系。

4。游戏。请生任意写一个60以内的自然数(0除外),听老师说要求,所写的数符合要求的请举手,同桌互相检查。

①()是4的倍数

()是60的因数

()是5的倍数

()是36的因数

②请一名学生模仿刚才老师的要求,继续练习。

③想一想,应该提什么要求,让全班同学都能举手?

生:()是1的倍数。

师:哗,全班都举手了,谁能总结刚才的说法。

生:任何不包括0的自然数都是1的倍数。

三倍数蒙氏教案篇5

学习内容:

人教版小学数学五年级下册第23、24页。

学习目标:

1.我能理解什么是质数和合数,掌握了判断质数、合数的方法。

2.我知道100以内的质数,记住了20以内的质数。

3.我能在自主探究中独立思考,合作探究时畅所欲言。

学习重点:

能理解质数、合数的意义,正确判断一个数是质数还是合数。

学习难点:

用恰当的方法找出100以内的质数;会给自然数分类。

教学过程:

一、导入新课

二、检查独学

1.互动分享收获。

2.质疑探讨。

3.试试身手:第23页做一做。

三、合作探究

1.小组合作,利用课本24页的表格,用恰当的方法找出100以内的质数,做一个质数表。

2.展示、交流:你们是怎样找出100以内质数的?

3.小组讨论:(1)有没有最大的质数或合数?(2)根据因数的个数,可把非零自然数分成哪几类?

我的想法________________________________

4.我能很快熟记20以内的质数。

5.独立思考:

(1)是不是所有的质数都是奇数?(2)是不是所有的奇数都是质数?

(3)是不是所有的合数都是偶数?(4)是不是所有的偶数都是合数?

6.组内交流。

三倍数蒙氏教案篇6

一、教学内容

1、因数和倍数

2、2、5、3的倍数的特征

3、质数和合数

二、教学目标

1、使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。

2、使学生通过自主探索,掌握2、5、3的倍数的特征。

3、逐步培养学生的数学抽象能力。

三、编排特点

1、精简概念,减轻学生记忆负担。

三方面的调整:

a。不再出现“整除”概念,直接从乘法算式引出因数和倍数的概念。

b。不再正式教学“分解质因数”,只作为阅读性材料进行介绍。

c。公因数、公因数、公倍数、最小公倍数移至“分数的意义和性质”单元,作为约分和通分的知识基础,更突出其应用性。

2、注意体现数学的抽象性。

数论知识本身具有抽象性。学生到了高年级也应注意培养其抽象思维。

四、具体编排

1、因数和倍数

因数和倍数的概念

过去:用÷=表示能被整除,÷=表示能被整除。

现在:用=直接引出因数和倍数的概念。

(1)用2×6=12给出因数和倍数的概念。

(2)用3×4=12进一步巩固上述概念。

(3)让学生利用因数和倍数的概念自主发现12的其他因数。

(4)可引导学生利用一般的乘法算式×=归纳出因数和倍数的概念。

(5)说明本单元的研究范围。

注意以下几点:

(1)虽然不出现“整除”一词,但本质上仍是以整除为基础,因此,乘法算式中的乘数和积都必须是整数。

(2)因数和倍数是一对相互依存的概念,不能单独存在。

(3)注意区分乘法各部分名称中的“因数”和本单元中的“因数”的联系和区别。

(4)注意区分“倍数”与前面学过的“倍”的联系与区别。

例1(一个数的因数的求法)

(1)可用不同的方法求出18的因数(列出积是18的乘法算式或列出被除数是18的除法算式),但应引导学生有序思考。

(2)用集合圈表示因数,为后面求两个数的公因数作铺垫。

一个数的因数的特点

(1)因数是其自身,最小因数是1、

(2)因数个数有限。

(3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。

例2(一个数的'倍数的求法)

(1)求法:用该数乘任一非0自然数所得的积都是该数的倍数。

(2)用集合圈表示倍数,为后面求两个数的公倍数作铺垫。

做一做

与例1结合起来,提供了2、3、5的倍数,为后面探讨2、3、5倍数的特征作准备。

一个数的倍数的特点

(1)最小倍数是其自身,没有的倍数。

(2)因数个数无限。

(3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。

2、2、5、3的倍数的特征

因为2、5的倍数的特征在个位数上就体现出来了,而3的倍数涉及到各数位上的数字之和,较为复杂,因此后安排3的倍数的特征。本部分内容对于熟练掌握约分、通分、分数的四则运算有很重要的作用。

2的倍数的特征

(1)从生活情境“双号”引入。

(2)观察2的倍数的个位数,总结出2的倍数的特征。

(3)介绍奇数和偶数的概念。

(4)可让学生随意找一些数进行验证,但不要求严格的证明。

5的倍数的特征

(1)编排方式与2的倍数的特征类似。

(2)可进一步总结既是2的倍数又是5的倍数的特征,即10的倍数的特征。

3的倍数的特征

(1)强调自主探索,让学生经历观察――猜想――猜想――再观察――再猜想――验证的过程。

(2)可任意选择一个数,用正面、反面的例子对结论进一步验证。

(3)也可对任一3的倍数的各位数调换位置,更深刻地理解3的倍数的特征。

3、质数和合数

质数和合数的概念

(1)根据20以内各数的因数个数把数分成三类:1、质数、合数。

(2)可任出一个数,让学生根据概念判断其为质数还是合数。

例1(找100以内的质数)

(1)方法多样。可以根据质数的概念逐个判断,也可用筛法。

(2)把握教学要求:知道100以内的质数,熟悉20以内的质数。

五、教学建议

1、加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。

从因数和倍数的含义去理解其他的相关概念。

2、要注意培养学生的抽象思维能力。

三倍数蒙氏教案篇7

教学目标:

1、学生掌握找一个数的因数,倍数的方法;

2、学生能了解一个数的因数是有限的,倍数是无限的;

3、能熟练地找一个数的因数和倍数;

4、培养学生的观察能力。

教学重点:

掌握找一个数的因数和倍数的方法。

教学难点:

能熟练地找一个数的因数和倍数。

教学过程:

一、引入新课。

1、出示主题图,让学生各列一道乘法算式。

2、师:看你能不能读懂下面的算式?

出示:因为2×6=12

所以2是12的因数,6也是12的因数;

12是2的倍数,12也是6的倍数。

3、师:你能不能用同样的方法说说另一道算式?

(指名生说一说)

师:你有没有明白因数和倍数的关系了?

那你还能找出12的其他因数吗?

4、你能不能写一个算式来考考同桌?学生写算式。

师:谁来出一个算式考考全班同学?

5、师:今天我们就来学习因数和倍数。(出示课题:因数倍数)

齐读p12的注意。

二、新授:

(一)找因数:

1、出示例1:18的因数有哪几个?

从12的因数可以看得出,一个数的因数还不止一个,那我们一起找找看18的因数有哪些?

学生尝试完成:汇报

(18的因数有:1,2,3,6,9,18)

师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)

师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。

2、用这样的方法,请你再找一找36的因数有那些?

汇报36的因数有:1,2,3,4,6,9,12,18,36

师:你是怎么找的?

举错例(1,2,3,4,6,6,9,12,18,36)

师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)

仔细看看,36的因数中,最小的是几,最大的是几?

看来,任何一个数的因数,最小的一定是(),而最大的一定是()。

3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自练本上写一写,然后汇报。

4、其实写一个数的因数除了这样写以外,还可以用集合表示:如

18的因数

小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?

从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。

(二)找倍数:

1、我们一起找到了18的因数,那2的倍数你能找出来吗?

汇报:2、4、6、8、10、16、……

师:为什么找不完?

你是怎么找到这些倍数的?(生:只要用2去乘1、乘2、乘3、乘4、…)

那么2的倍数最小是几?最大的你能找到吗?

2、让学生完成做一做1、2小题:找3和5的倍数。

汇报3的倍数有:3,6,9,12

师:这样写可以吗?为什么?应该怎么改呢?

改写成:3的倍数有:3,6,9,12,……

你是怎么找的?(用3分别乘以1,2,3,……倍)

5的倍数有:5,10,15,20,……

师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示

2的倍数3的倍数5的倍数

师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?

(一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)

三、课堂小结:

我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

四、独立作业:

完成练习二1~4题

《三倍数蒙氏教案7篇.doc》
将本文的Word文档下载,方便收藏和打印
推荐度:
点击下载文档

相关文章

最新文章

分类

关闭